Difference between revisions of "Determination of Planck's Constant"

From wwwelab
Jump to navigation Jump to search
Line 1: Line 1:
 
=Descrição da Experiência=
 
=Descrição da Experiência=
 
O objectivo desta experiência é o estudo do efeito fotoeléctrico e a determinação da constante de Planck, usando 5 leds de cores diferentes e intensidade regulável a incidir sobre uma célula fotoeléctrica.
 
O objectivo desta experiência é o estudo do efeito fotoeléctrico e a determinação da constante de Planck, usando 5 leds de cores diferentes e intensidade regulável a incidir sobre uma célula fotoeléctrica.
 +
 
=Aparato Experimental=
 
=Aparato Experimental=
 
[[File:Espectro_dos_leds.png|thumb|alt=Espectro dos Leds|Figura 1: Espectro dos leds.]]
 
[[File:Espectro_dos_leds.png|thumb|alt=Espectro dos Leds|Figura 1: Espectro dos leds.]]
Line 35: Line 36:
 
|565.22
 
|565.22
 
|}
 
|}
 +
 +
=Protocolo=
 +
Segundo o efeito fotoeléctrico, o numero de fotoelectrões emitidos por unidade de tempo duplica quando a intesidade da luz duplica. (comportamento corpuscular da luz)
 +
 +
#Escolher a cor a incidir sobre a fotocélula.
 +
#Tome nota da tensão de paragem e determine o tempo necessário para atingir a tensão máxima.
 +
#Repita passo 2 para diferentes intensidades.
 +
 +
{| border="1" style="text-align: center;"
 +
|+ Exemplo de uma tabela
 +
|-
 +
!Cor #1 __________(nome)
 +
!Transmissão (%)
 +
!Potencial paragem (V)
 +
!Tempo de carga (s)
 +
|-
 +
 +
|100
 +
 +
 +
|-
 +
 +
|80
 +
 +
 +
|-
 +
 +
|60
 +
 +
 +
|-
 +
 +
|40
 +
 +
|
 +
|-
 +
 +
|20
 +
 +
|
 +
|}
 +
 +
 +
[[File:Constante de Planck.png|thumb|alt=Constante de Planck|Figura 2: Tensão vs. Pico de frequência da luz]]
 +
 +
A energia cinética dos fotoelectrões depende apenas da frequência da luz. Quanto maior for a frequência da luz, maior é a energia.
 +
 +
#Obtenha as tensões de paragem para diferentes cores.
 +
#Fazer um ajuste linear ao gráfico Tensão vs. Frequência e obtenha a constante de Planck.
 +
 +
 +
{| border="1" style="text-align: center;"
 +
|+ Exemplo de uma tabela
 +
|-
 +
!Cor (nome)
 +
!Frequência (Hz)
 +
!Potencial paragem (V)
 +
|-
 +
 +
|
 +
|
 +
|-
 +
|
 +
 +
|
 +
|-
 +
|
 +
 +
|
 +
|-
 +
|
 +
 +
|
 +
|-
 +
 +
|
 +
|
 +
|}
 +
 +
=Protocolo Avançado=
 +
 +
#Calcule a constante de tempo da montagem.
 +
#Encontre os valores esperados do comprimento de onda apartir dos espectros dos leds.
 +
#Refaça o gráfico tensão vs frequência com barras de erro.
 +
 +
Nota: Utilizou-se um ADC 12bit no intervalo de 0V a 5V.
 +
 +
=Princípios Teóricos=
 +
 +
==Efeito Fotoeléctrico==
 +
O efeito foto-eléctrico consiste na emissão de electrões da superfície de  um metal quando este é iluminado por luz de uma dada frequência (\( \nu \)). Um fotão de energia \( E = h \nu \) ao incidir no metal transfere a sua energia a um electrão pertencente a um dos átomos na rede cristalina do metal. A emissão de electrões do metal é muito dependente da frequência da luz incidente. Para cada metal, existe uma frequência critica, \( \nu _0 \), tal que para luz incidente com frequência inferior não há foto-electrões arrancados. Por outro lado, para frequências superiores, a energia dos foto-electrões emitidos aumenta linearmente com a energia dos fotões incidentes. A intensidade da luz incidente afecta somente o número de foto-electrões emitidos, mas não a sua energia, contrariamente ao que seria de esperar na teoria clássica da radiação.
 +
Einstein propôs a seguinte explicação para o fenómeno: a luz é transportada por fotões com uma dada energia E associada à frequência da luz \( \nu \):
 +
 +
\[
 +
E = h \times \nu
 +
\]
 +
 +
em que ''h'' é a constante de Planck. O efeito foto-eléctrico deve-se a uma colisão do fotão com o electrão, em que aquele transmite a este toda a sua energia. Tendo em conta que a energia de um electrão no vazio e dentro do metal é diferente (mais elevada no vazio), só se verifica efeito foto-eléctrico se a energia transmitida pelo fotão for superior à diferença entre estas  duas energias (ver Fig. 1). Assim, a energia com que o electrão abandona o metal é igual à energia do fotão menos a energia "gasta" para o electrão abandonar o metal:
 +
 +
\[
 +
E = h \times \nu - e \times \phi,
 +
\]
 +
 +
em que ''e'' é a carga do electrão e \( \phi \) é a diferença de ''workfunction''.
 +
Tal como foi anteriormente enunciado, à medida que a frequência da luz incidente decresce, os fotões têm menos energia, e a partir de uma frequência critica \( \nu _0 \) não são emitidos mais foto-electrões. Neste caso, \( E _{max} = 0 \) e da Eq. l tiramos
 +
 +
\[
 +
h \nu _0 = e \phi \quad ou \quad \nu _0 = \frac{e}{h} \phi
 +
\]
 +
 +
[[File:Plank-teo1.png|thumb]]
 +
 +
 +
==Efeito Fotoeléctrico==
 +
Uma célula foto-eléctrica é um dispositivo onde a luz incidente sobre uma superfície metálica (cátodo) excita electrões que vão ser colectados numa superfície metálica concêntrica (ânodo), tal como exemplificado na figura, e que na prática é um condensador semi-cilíndrico de capacidade muito baixa. Ligando o ânodo e o cátodo por um circuito externo, podemos medir a corrente produzida pelos foto-electrões. No caso mais genérico, a energia cinética máxima dos foto-electrões emitidos é determinada aplicando um potencial de paragem, Vc entre o ânodo e o cátodo de modo a impedir que os foto-electrões emitidos pelo cátodo atinjam o ânodo. Deste modo, deixa de fluir corrente no circuito.
 +
 +
[[File:Plank-celula1.png|thumb]]
 +
 +
A célula inicialmente tem aplicada a tensão da fonte, aproximadamente 9V uma vez que o condensador é descarregado no início da experiência (é efectuado um curto-circuito aos seus terminais). Como a célula está em série com o condensador, este vai carregando à medida que são gerados foto-electrões, criando uma corrente eléctrica no circuito que atravessa a célula. À medida que o condensador carrega, aumenta a diferença de potencial aos seus terminais, o que obriga a diminuir a tensão aos terminais da célula (note que \( V_{bat} = V_{Cond} + V_{célula} = constante \)). Quando a diferença de potencial nas placas da célula for igual a \( V_c = \frac{h \times \nu - e \times \phi}{e} \), deixa de fluir corrente no circuito e o condensador passa a ter uma tensão constante aos seus terminais.
 +
 +
Conhecendo dois ou mais valores dessa tensão para determinadas frequências [1] pode-se efectuar uma regressão linear e determinar não só \( \phi \) mas também a constante de Planck. No gráfico seguinte esquematizamos a dependência da tensão de paragem V em função da frequência da luz incidente para um dado metal. A função em causa corresponde a uma recta de declive \( \frac{h}{e} \) e coeficiente na origem \( \phi \).
 +
 +
[[File:Plank-celula2.png|thumb]]
 +
 +
 +
=Elementos Históricos=
 +
Em 1921 foi atribuído a Albert Einstein o Prémio Nobel da Física pelas suas descobertas no efeito fotoeléctrico.

Revision as of 16:26, 29 September 2012

Descrição da Experiência

O objectivo desta experiência é o estudo do efeito fotoeléctrico e a determinação da constante de Planck, usando 5 leds de cores diferentes e intensidade regulável a incidir sobre uma célula fotoeléctrica.

Aparato Experimental

Espectro dos Leds
Figura 1: Espectro dos leds.

A célula fotoeléctrica pertence ao aparato da PASCO AP-9368, é do tipo condensador onde uma das placas emite os foto-electrões. À medida que os fotoelectrões são emitidos a diferença de potencial aos terminais da fotocélula aumenta. Para cada comprimento de onda detectado produz um potencial segundo o efeito fotoeléctrico.

Os terminais da fotocélula são ligados á terra após feitas as medidas por forma a descarregar o circuito.

Os leds têm espectros e intensidades diferentes por isso o tempo necessário para atingir o tensão terminal depende do led utilizado.

Tabela 1 – Picos do espectro dos leds
Cor Frequência (THz) Comprimento de onda (nm)
Azul.ab 638.7 469.70
Azul 684.6 438.20
Vermelho 482.2 622.21
Amarelo 514.4 583.16
Verde 530.8 565.22

Protocolo

Segundo o efeito fotoeléctrico, o numero de fotoelectrões emitidos por unidade de tempo duplica quando a intesidade da luz duplica. (comportamento corpuscular da luz)

  1. Escolher a cor a incidir sobre a fotocélula.
  2. Tome nota da tensão de paragem e determine o tempo necessário para atingir a tensão máxima.
  3. Repita passo 2 para diferentes intensidades.
Exemplo de uma tabela
Cor #1 __________(nome) Transmissão (%) Potencial paragem (V) Tempo de carga (s)
  100    
  80    
  60    
  40  
  20  


Constante de Planck
Figura 2: Tensão vs. Pico de frequência da luz

A energia cinética dos fotoelectrões depende apenas da frequência da luz. Quanto maior for a frequência da luz, maior é a energia.

  1. Obtenha as tensões de paragem para diferentes cores.
  2. Fazer um ajuste linear ao gráfico Tensão vs. Frequência e obtenha a constante de Planck.


Exemplo de uma tabela
Cor (nome) Frequência (Hz) Potencial paragem (V)
 
 
 
 
 

Protocolo Avançado

  1. Calcule a constante de tempo da montagem.
  2. Encontre os valores esperados do comprimento de onda apartir dos espectros dos leds.
  3. Refaça o gráfico tensão vs frequência com barras de erro.

Nota: Utilizou-se um ADC 12bit no intervalo de 0V a 5V.

Princípios Teóricos

Efeito Fotoeléctrico

O efeito foto-eléctrico consiste na emissão de electrões da superfície de  um metal quando este é iluminado por luz de uma dada frequência (\( \nu \)). Um fotão de energia \( E = h \nu \) ao incidir no metal transfere a sua energia a um electrão pertencente a um dos átomos na rede cristalina do metal. A emissão de electrões do metal é muito dependente da frequência da luz incidente. Para cada metal, existe uma frequência critica, \( \nu _0 \), tal que para luz incidente com frequência inferior não há foto-electrões arrancados. Por outro lado, para frequências superiores, a energia dos foto-electrões emitidos aumenta linearmente com a energia dos fotões incidentes. A intensidade da luz incidente afecta somente o número de foto-electrões emitidos, mas não a sua energia, contrariamente ao que seria de esperar na teoria clássica da radiação. Einstein propôs a seguinte explicação para o fenómeno: a luz é transportada por fotões com uma dada energia E associada à frequência da luz \( \nu \):

\[ E = h \times \nu \]

em que h é a constante de Planck. O efeito foto-eléctrico deve-se a uma colisão do fotão com o electrão, em que aquele transmite a este toda a sua energia. Tendo em conta que a energia de um electrão no vazio e dentro do metal é diferente (mais elevada no vazio), só se verifica efeito foto-eléctrico se a energia transmitida pelo fotão for superior à diferença entre estas  duas energias (ver Fig. 1). Assim, a energia com que o electrão abandona o metal é igual à energia do fotão menos a energia "gasta" para o electrão abandonar o metal:

\[ E = h \times \nu - e \times \phi, \]

em que e é a carga do electrão e \( \phi \) é a diferença de workfunction. Tal como foi anteriormente enunciado, à medida que a frequência da luz incidente decresce, os fotões têm menos energia, e a partir de uma frequência critica \( \nu _0 \) não são emitidos mais foto-electrões. Neste caso, \( E _{max} = 0 \) e da Eq. l tiramos

\[ h \nu _0 = e \phi \quad ou \quad \nu _0 = \frac{e}{h} \phi \]

Plank-teo1.png


Efeito Fotoeléctrico

Uma célula foto-eléctrica é um dispositivo onde a luz incidente sobre uma superfície metálica (cátodo) excita electrões que vão ser colectados numa superfície metálica concêntrica (ânodo), tal como exemplificado na figura, e que na prática é um condensador semi-cilíndrico de capacidade muito baixa. Ligando o ânodo e o cátodo por um circuito externo, podemos medir a corrente produzida pelos foto-electrões. No caso mais genérico, a energia cinética máxima dos foto-electrões emitidos é determinada aplicando um potencial de paragem, Vc entre o ânodo e o cátodo de modo a impedir que os foto-electrões emitidos pelo cátodo atinjam o ânodo. Deste modo, deixa de fluir corrente no circuito.

Plank-celula1.png

A célula inicialmente tem aplicada a tensão da fonte, aproximadamente 9V uma vez que o condensador é descarregado no início da experiência (é efectuado um curto-circuito aos seus terminais). Como a célula está em série com o condensador, este vai carregando à medida que são gerados foto-electrões, criando uma corrente eléctrica no circuito que atravessa a célula. À medida que o condensador carrega, aumenta a diferença de potencial aos seus terminais, o que obriga a diminuir a tensão aos terminais da célula (note que \( V_{bat} = V_{Cond} + V_{célula} = constante \)). Quando a diferença de potencial nas placas da célula for igual a \( V_c = \frac{h \times \nu - e \times \phi}{e} \), deixa de fluir corrente no circuito e o condensador passa a ter uma tensão constante aos seus terminais.

Conhecendo dois ou mais valores dessa tensão para determinadas frequências [1] pode-se efectuar uma regressão linear e determinar não só \( \phi \) mas também a constante de Planck. No gráfico seguinte esquematizamos a dependência da tensão de paragem V em função da frequência da luz incidente para um dado metal. A função em causa corresponde a uma recta de declive \( \frac{h}{e} \) e coeficiente na origem \( \phi \).

Plank-celula2.png


Elementos Históricos

Em 1921 foi atribuído a Albert Einstein o Prémio Nobel da Física pelas suas descobertas no efeito fotoeléctrico.